

## Event Reconstruction in High-Energy Physics Experiments

#### S. Shmatov, N. Voytishin

20–25 Oct 2024 Yerevan, Armenia Asia/Yerevan timezone





## **HEP Experiments: Collider and Fixed-Target**





ATLAS (CERN)

# What just happened?



- HEP experiments can produce O(10) petabytes of data per year (LHC case).
- Data is processed to the stage of physics papers → measurements and discoveries.



- Many steps involved
- Each step has computing costs, varying inefficiencies, often in large backgrounds.

## **Data Flow**



#### Data reconstruction generally involves several steps of processing and reduction:



| Stage                    | Trigger                                           | Event Reconstruction                                           | St  | ripping (AKA Skimming)                               |
|--------------------------|---------------------------------------------------|----------------------------------------------------------------|-----|------------------------------------------------------|
| Description              | Initial selection for finding interesting events. | Reconstruct triggered data into list of particles.             | Sig | nature selection trained by prior physics knowledge. |
| Hardware<br>Implemented  | Local electronics or CPU/<br>GPU processing farm. | Inside trigger and/or the Grid (see later).                    |     | The Grid.                                            |
| Timescale                | Live.                                             | Almost live (requires detector calibration). Repeated ~yearly. |     | Any point, ~monthly turn<br>around.                  |
| Data reduction<br>factor | 10 <sup>6*</sup> (permanent loss).                | 10x (used for Physics).                                        |     | Analysis dependant.                                  |
|                          |                                                   |                                                                |     | This talk                                            |

# **Event Reconstruction**

- Triggered detector collision data → particle interactions.
- Seek the following information as input for physics analysis
  - What particles were created?
  - Where were they produced?
  - What were the parent particles?
  - To find this, perform
  - Tracking: Reconstruct particle trajectories into tracks.
  - Vertexing: Group particles into vertices.
  - **Particle ID**: Find the particle identification of each track (e.g. a muon, electron etc.).

Requirements for reconstruction algos:

- Fast
- Good quality (enough for physics analysis)

Usually anti correlated - a fast > algorithm often leads to inefficiency and impurities (see later).

Trigger Bias (not everything depends from reco-algo)

- Data sets from triggers inevitably biased by trigger. E.g. experiment finds deficit Higgs candidates with ET < 5 GeV (unsurprising if ETTrig = 5 GeV).</li>
- Can be accounted for:
  - ✓ Comparisons with simulation, many factors (detector performance, collider conditions).
  - ✓ Comparison with non-triggered data: Far lower rate! Have to extrapolate.



## **Physics Objects**



- Muons (transverse momentum p<sub>T</sub>)
- Electrons (energy and tr. momentum p<sub>T</sub>)
- Photons (energy)
- Jets (energy and coordinates )
- Unstable Particles
- Missing energy and p<sub>T</sub>
  - vectorial sum of all transverse momentum
- **Kinematic Variables**
- Transverse momentum p<sub>T</sub> (energy)
  - particles that escape detection have  $p_T=0$
  - total visible  $p_T = 0$
- Longitudinal momentum p<sub>z</sub> and energy E<sub>z</sub>
  - particles that escape detection have  $p_T=0$
  - visible p<sub>z</sub> is not conserved (not so usefull variable)
- Angles
  - azimuthal and polar angles
  - polar angle  $\theta$  is not Lorenz invariant  $\Rightarrow$
  - rapidity y
  - or (or m=0) pseudorapidity  $\eta$



 $y \equiv \frac{1}{2} \ln \left( \frac{E + p_z}{E - p_z} \right)$ 

 $\eta = -\ln\left|\tan\left(\frac{\theta}{2}\right)\right|$ 





 $4\pi$ -experiments cover 360<sup>o</sup> over  $\phi$  and large pseudorapidity range, <u>≤ 5.0 (0.8°</u>

### **Particles in Detectors**





# **Tracking Algorithms**

Tracking particles through detectors involves two step

- Pattern recognition: identifying which detector hits for a track.
- Track fit: approximate the path of the particle with an equation
- No one size fits all solution.
- Many detectors use different combinations of algorithms (e.g. LHCb uses 4 different algorithms for different combinations of sub detectors, but basic ideas are the same). Usually a trade off between
  - ✓ Efficiency: fraction of real tracks found
  - ✓ Purity: fraction of tracks that are real
  - ✓ Computational speed.

#### **Reconstruction conditions:**

- high multiplicity and density of flying charged particles
- high collision rate
- high data flow density
- the presence of massive layers of matter calorimeters, magnetic yoke...
- pile-up

Typically these two are anti correlated: a good efficiency typically has a bad purity, and vice versa. Both good efficiency and purity is usually computationally expensive - see later.















# **Tracking - Pattern Recognition**



| Name               | Description                                                                                                                                                                                                  | Scalability           |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Combinatorial      | <ul> <li>Form every track from each possible combination.</li> <li>Access each track by quality (e.g. !<sup>2</sup>) and tag.</li> </ul>                                                                     | n <sub>Tracks</sub> ! |
| Hough<br>Transform | <ul> <li>Transform points into a system where clusters form.</li> <li>E.g. for straight tracks, take the difference between consecutive hits.</li> <li>Group (e.g. in a histogram) and tag peaks.</li> </ul> | x                     |
| Seeding            | <ul> <li>Form seeds from pairs of hits on a sub set of the detector.</li> <li>Extrapolate the seed and count hits intercepted.</li> <li>Tag if sufficient number of hits.</li> </ul>                         | nlog(n)               |



# **Pattern Recognition Algorithms**

MUT

Recall three main factors in choosing such algorithms:

- Efficiency: fraction of real tracks found
- Purity: fraction of tracks that are real
- Computational speed



#### Toy simulation for LHCb VELO:

Typically use a combination of these algorithms

#### **Reconstruction of high pT muon trajectories**





84 hits in chamber

Reconstruction efficiency vs. pseudorapidity

## **Methods for Track Finding**





## Kalman filter

Among the many tracking methods, the most effective was the method using the **Kalman filter**, since it allows one to easily take into account the non-uniformity of the magnetic field, multiple scattering and energy losses.

Kalman Filter (KF) – an efficient recursive filter that estimates the state of a linear dynamic system using a series of imprecise measurements.

State vector  $\vec{x} = (x, y, t_x, t_y, q/p)^T$  is iteratively evaluated to predict the track position on the next coordinate plane, taking into account the change in the covariance matrix and error corridors.

The main flaw of KF – the need to know the initial value of the state vector  $\vec{x}$ , seeding





## **Muon Track and Dimuons Reconstruction**



#### CMS Muon System shows a excellent performance to detect different resonances



https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsMUO

### Example of $h \rightarrow ZZ \rightarrow 2e 2\mu$





## **Jet Finding**





### Calorimeter jet (cone)

- jet is a collection of energy deposits with a given cone *R*:  $R = \sqrt{\Delta \varphi^2 + \Delta \eta^2}$
- cone direction maximizes the total E<sub>T</sub> of the jet
- various clustering algorithms
  - → correct for finite energy resolution
  - → subtract underlying event
  - → add out of cone energy

### Particle jet

 a spread of particles running roughly in the same direction as the parton after hadronization

## **Global Event Reconstruction**



Using all information of the detector together for optimal measurement



- Optimal combination of information from all subdetectors
- Returns a list of reconstructed particles
  - e,μ,γ, charged and neutral hadrons
    - Used in the analysis as if it came from a list of generated particles
    - Used as building blocks for jets, taus, missing transverse energy, isolation and PU particle identification

## Example of $h \rightarrow 2\gamma$





## **Event Reconstruction Implementation**

• Each reconstruction stage typically (sometimes by necessity) follows sequentially, e.g.



- Such a chain can be performed for a single event, or large set of events.
  - Reminder: each event is (usually) statistically independent of each-other.
- Strategy for single core is obvious, but for multi core, not so much.
- Nowadays, reconstruction involves tens of thousands of CPUs worldwide need efficient strategy.
- Currently limited by memory:
  - E.g. CMS end of 2011 could only 6 out of 8 cores on average.



#### Thank you for your attention!



## **Machine Learning**





Deep neural networks based on many low-level features with large training data sets to classify jets





Large performance gain over previous algorithm



# What just happened?

